
Diffusion-relaxation coupling in polymers 
which show two-stage sorption 
phenomena 

Shriram Joshi 
Department of Chemical Engineering, University of Delaware Newark, Delaware 19711, USA 
and Gianni Astarita 
Istituto di Principi di Ingegneria Chimica, Universita di Napoli, Naples, Italy 
(Received 17 July 1978; revised 21 September 1978) 

The diffusion behaviour of swollen polymer films in interval sorption experiments cannot be 
explained satisfactorily by the available models for diffusion into polymeric materials, and compels 
us to accept that the state of the swollen polymer should be characterized not only by the state 
variables such as temperature and pressure but also by a 'degree of swelling'. The concept of activity 
parameter as an internal state variable is introduced as an yardstick for the degree of swelling and the 
rate of evolution of this has been related directly to the concept of relaxation time. Assuming a simple 
empirical constitutive rate equation for the physical process involved, asymptotic as well as the com- 
plete solution of the proposed mathematical model are developed and the results agree well with the 
available experimental data on two-stage sorption. 

INTRODUCTION 

The diffusion behaviour of low molecular weight solvents 
in glassy polymers cannot be described adequately by con- 
centration-dependent diffusivity whenever the solvent 
causes swelling of the polymer 1-s'12. This 'non-Fickian', 
behaviour can be attributed to changes in polymer structure 
induced by the solvent, and has often been related to 
stresses exerted by one part of the medium on another as 
diffusion proceeds 6-9. 

Astarita and Sarti 1° have presented a phenomenological 
analysis of this problem which takes into explicit consid- 
eration the kinetics of the glassy ~ swollen secondary phase 
transition. They have considered the case of a semi-infinite 
slab of polymer, and, in spite of  rather extreme simplifying 
assumptions, they have shown that the major characteris- 
tics of the so-called 'case-two transport' and 'anomalous 
diffusion' behaviours observed experimentally can be pre- 
dicted. Astarita and Joshi I~ have relaxed some of the simp- 
lifying assumptions introduced by Astarita and Sarti, and 
have thus been able to explain quantitatively a variety of 
different sorption behaviours observed experimentally, and 
in particular the effect of sample dimensions. 

However, not all experimentally observed behaviours 
can be explained by the still somewhat simplified model 
of Astarita and Joshi. In particular, Bagley and Long 13 
have reported experimental observation on interval sorp- 
tion of acetone in cellulose acetate films, which cannot 
be explained by the model discussed in reference 11. 

The experiments by Bagley and Long can be concisely 
described as follows. The polymer film is first brought to 
equilibrium with acetone vapour at some vapour pressure 
Po ; the vapour pressure is then brought to a new value 
pl(~P0) and the weight sorbed is measured as a function 
of time. The experiment is then repeated with progressive 
increases of  the acetone vapour pressure. 

The weight vs. time behaviour observed for each interval 

sorption, is, qualitatively, as follows: an initial uptake 
where W is proportional to t 1/2 is observed, followed by 
an apparent equilibrium. This is in turn tbllowed by a slow 
approach to final (and presumably true) equilibrium. 

While such behaviour for the first sorption interval for 
which it is observed can be explained by Astarita and 
Joshi's model, by attributing the apparent equilibrium to 
glassy-phase saturation, the reproduction of the same be- 
haviour for subsequent sorption intervals cannot: in Astarita 
and Joshi's model, once the polymer has undergone the 
glassy -~ swollen secondary phase transition, it can only 
behave as an ordinary material incapable of showing anoma- 
lous diffusion. Bagley and Long's experiments, however, 
force one to accept the fact that a satisfactory description 
of diffusion in polymers requires consideration of an addi- 
tional complication, namely that a polymer is in fact cap- 
able of  different 'degrees of swelling', so that in some sense 
to be made precise the state of the polymeric material can- 
not simply be described by stating whether it is glassy or 
swollen. The present work presents a formalization of this 
rather elementary physical concept. 

MODELLING OF THE PHENOMENON 

Consider a polymer sample which is uniformly at equilibrium 
with some external phase where the fugacity of a solvent is 
-/Co. Suppose that at time t = 0 the fugacity of the solvent 
is brought to some new value f l ,  and kept constant there- 
after. This is in essence the description of the experiments 
of Bagley and Long discussed in the introduction. 

Whenever phenomena of mass transfer between two 
phases are considered, it is always assumed that equilibrium 
prevails at the interface, say that the fugacity is continuous 
across an interface. The philosophical reasons for such an 
assumption are hard to pin down, but it has always been a 
successful assumption in mass transfer work and there 
seems to be no reason to reject it in the case where one of 
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the phases is a polymeric material. Therefore, in the ex- 
periment described, the fugacity of the solvent in the poly- 
meric phase at the interface may be assumed to be f l  from 
t = 0 onwards. 

This does not, however, necessarily imply that the con- 
centration of solvent at the interface will be constant in 
time. Indeed, the relationship between fugacity and con- 
centration of a component of a phase depends on the state 
of that phase; while in general the state is regarded as being 
uniquely determined by temperature and pressure, in the 
case of  a swollen polymer an additional state variable needs 
to be considered, namely, the degree of swelling. 

Let c(t) be the concentration of solvent in the polymer 
at the interface at t > O. An activity parameter ~ may be 
defined as follows 

c = ~ f~  (1) 

where $ is a function of time, ~ = $(t). The parameter so 
defined is presumably related to the degree of swelling; 
since there is no pragmatic reason to define the latter in- 
dependently of the former, we may as well take ~ itself to 
be an appropriate yardstick of the state of the material. 

As t -+ 0% the activity parameter ~ will approach some 
equilibrium value g~ corresponding to the fugacity f l ,  say 

lim ~ =/~' (2 )  
t---~o~ 

Yet at t = 0 the activity parameter is the one corresponding 
to equilibrium under a fugacity fo, say ~ :  

~(t = O) = ~ (3) 

If the rate of approach to the final value ~ is sufficiently 
slow, a time-dependent concentration of solvent at the 
interface will be observed. 

Introduction of the parameter ~ is an example of a well 
known procedure of thermodynamic theory, namely, the 
theory of systems with internal state variables. Such theories 
have been studied in rigorous mathematical terms 14, and 
their usefulness in the description of polymer physics has 
been pointed out Is. Typically, the thermodynamic theory 
of systems with internal state variables requires the intro- 
duction (in addition to the usual constitutive functions 
delivering the values of such thermodynamic quantities as 
entropy, pressure, etc.) of a constitutive function the value 
of which is the rate of  change of the internal state variable. 
In the specific case considered here, one would need to 
introduce a constitutive function for the rate of change of 
the activity parameter say: 

d~ 
- -  = r (~ )  (4 )  
dt 

where only ~ itself has been considered as an argument of 
the function r(o), since f l ,  temperature and pressure are 
held constant in the experiment considered. 

Equation 4 allows to define, though of course trivially, 
the equilibrium value ~ ,  as the root of the function r(e), 
say r ( ~ )  = O. (The thermodynamic theory implies that, 
ifr(e) is sufficiently smooth at ~ = ~ ' ,  then the affinity, 
derivative of free energy with respect to ~ is zero at ~ = ~ ' ;  
this is irrelevant for the present problem). 

In order to be able to make quantitative predictions, a 

specific form for the constitutive function r(.) needs to 
be assumed. The simplest such form is of course the linear 
one; say, consistently with the requirement that r(~ ~) = O, 
we may write: 

d~ - 

.dt 0 
(5) 

where 0 is the 'relaxation time' of the swelling phenomenon. 
Equation 5, subject to the boundary condition ~ = $~ at 
t = 0, integrates to 

= ~ - ( ~  - ~ )  exp (-t/O) (6) 

and hence from equation 1 : 

c = c~ - (c~ - clO ) exp(-t/O) (7) 

whe re: 
- c~ = f l  ~ ,  is the equilibrium concentration of solvent 

corresponding to the fugacity f l ;  
- clo = f l ~  is the concentration corresponding to the 

fugacityfl and to the activity parameter ~ (the latter 
corresponds to equilibrium under a fugacity fo). 

Long and Richmann ~6 have measured the inter- 
face concentration of solvent in the polymer as a function 
of time, and report that equation 7 is indeed a good correla- 
tion of measured data. It seems therefore that there is no 
need to lay down constitutive assumptions more complex 
than the linear form given in equation 5. 

Of course, in the experiment considered, while the 
fugacity of the solvent is constant in time, and equal to f l ,  
at the interface of the sample, it is not so within the sample 
itself. In fact, the concentration in the bulk of the sample 
at time t = 0 is c~ = f o ~ ,  and is therefore different from 
the concentration ClO that established itself at the interface 
at time 0. Hence, a diffusion phenomenon will start tak- 
ing place since time t = 0 in the sample. 

Before discussing the mathematical description of the 
diffusion phenomenon, a few elementary order-of-magni- 
tude arguments can easily be presented. These allow to 
establish very simply two limiting asymptotic behaviours. 

First consider the case where 0 has a small value, say 
more precisely 

0 <<< X2/D (8) 

where X is the half-thickness of the sample and D is the 
diffusivity of the solvent. If equation 8 is satisfied, the 
concentration of solvent at the interface will have approach- 
ed its equilibrium value c~ before any appreciable amount 
of solvent has had time to diffuse into the sample. Corres- 
pondingly, one would observe an ordinary diffusion pheno- 
menon under a steady driving force c~ - c~, and the swell- 
ing-relaxation phenomenon needs not be considered at all. 
Indeed, this is the behaviour observed in practically all non- 
polymeric materials, which are characterized by exceed- 
ingly short relaxation times. 

Conversely, consider the case where 0 is a very large 
number, say: 

0 >>> X2/D (9) 

In this case, a diffusion phenomenon would proceed under 
a driving force clO - c~ up to complete saturation of the 
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sample before the interface concentration of solvent changes 
appreciably from its initial value Cl0. One would therefore 
observe an apparent saturation of the sample, followed by 
a very slow secondary uptake; the latter would simply be 
described by equation 7 which would now apply through the 
sample. This is in essence the experimentally observed be- 
haviour reported by both Bagley and Long Is and Long and 
Richmann ~6 which cannot be explained by the Astarita and 
Joshi analysis 11. 

It is interesting to observe that, if equation 9 is satisfied, 
and if the overall length of the experiment is larger than 
X2/D but smaller than 0, one would not observe the slow 
secondary uptake, and one would attribute the plateau to 
equilibrium; in other words, ClO would be identified with 
the equilibrium concentration which it is not. These appa- 
rent equilibria, the values of which depend on the past his- 
tory to which the sample has been subjected, have been 
observed experimentally 19 and discussed theoretically 18. 

Since the asymptotic behaviours to be expected if either 
equation 8 or equation 9 hold can be obtained without a 
mathematical formulation of the diffusion-relaxation pheno- 
menon, the latter needs to be developed only for those cases 
where the relaxation time 0 and the diffusion time X2/D 
are the comparable orders of magnitude. This is discussed 
in the next section. 

MATHEMATICAL MODEL 

Let 0D be the diff~lsion time: 

0 D = X 2 / D  (10) 

As discussed in the preceding section, a formal methematical 
model is required only when 0 and 0O are of comparable 
orders of magnitude. Such a mathematical model should 
describe both the concentration and the activity parameter 
field within the sample; the differential equations for the 
two fields are in principle coupled, since by the principle 
of equipresence t9 one would need to assume that the diffu- 
sivity depends on the activity parameter. 

As a first approximation, one may neglect the latter 
effect and regard D as a constant. With this approximation 
the differential equation for the concentration field be- 
comes uncoupled, and reduces to the ordinary diffusion 
equation. The boundary conditions are: at the sample's 
surface, equation 7; at time 0, c = c~. In the special case 
where the sample has a plane geometry (e.g., a membrane), 
this problem allows a closed form solution, which has been 
given by Long and Richmann ~6 who deduced equation 7 
from direct experimental observations. The solution as 
given by Long and Richmann fits experimental data with 
satisfactory accuracy, thus showing that the assumption 
D = constant is not unreasonable one. 

There are a few points about the analytical solution 
which deserve comment. Let W be the weight of solvent 
sobred per unit volume of the polymer sample; the analy- 
tical solution can be cast in the following form: 

[42 = (C~ --  c ~ ) f D ( t  ) - -  (C~ -- ClO) 

[fDR(t) t T ( 1 - - e - t ~ ° ) ]  

where: 

(I1) 

(~2 = OD/O = X 2/DO (12) 

Diffusion-relaxation coupfing: S. Joshi and G. Astarita 

fD(t) = 2 ~ 1 -- exp(--a2t/OD) (13) 
N= 1 

o o  

fDR(t) = 2 ~ 1 --exp(--a2Nt/OD) 
a2 - ~b 2 (14) 

N=I 

(15) 

The parameter ~b is reminiscent of the Thiele modulus which 
emerges in the analysis of the effectiveness of porous cata- 
lysts. The functionfD(t) is the ratio of weight sorbed to 
driving force which would emerge from the analysis of a 
purely diffusive process. 

It requires tedious but straightforward algebra to con- 
vince oneself that, when ~ >> 1, the whole term in square 
brackets on the RHS of equation 11 tends to zero [in par- 
ticular, if ¢ approaches one of the aN values, the leading 
term in the series which defines fDR(t) cancels out with the 
second term in the square bracket]. This implies that the 
whole process proceeds as an ordinary diffusion process 
under the driving force c~ - c~, i.e., the relaxation does 
not manifest itself in any observable way. 

Conversely, if ¢ ~ 1, the function fDR(t) approaches 
the value offD(t ) at all times, and equation 11 becomes: 

W= (Cl 0 - C~)fD(t) + (c'~ -- cl0)(1 - e -t/O) (16) 

i.e., the process proceeds first as an ordinary diffusion 
under the initial driving force Cl0 - c~, leading to an 'appa- 
rent equilibrium' this is followed by a slow first-order 
relaxation to the filial equilibrium under the residual driv- 
ing force c~ - Cl0. 

One may therefore conclude that the fimiting behaviours 
predicted on an intuitive basis in the preceding section do 
in fact emerge as proper asymptotes of the analytical solu- 
tion for the particular geometry (plane) for which such a 
solution is available. This gives support to the idea that 
such limiting behaviours will in fact be observed for any 
geometry. 

It is, however, important to note that ¢ is only the square 
root of the OD/O ratio, and that therefore the two limiting 
behaviours will in fact be observed only if the diffusion and 
relaxation times are widely different. When such is not 
the case, equation 11 shows that one cannot simply super- 
impose a diffusion term and a relaxation term in the cal- 
culation of the weight sorbed; diffusion and relaxation are 
coupled through the term in square brackets which con- 
tains both OD and 0. 

Berens 2° and Berens and Hopfenberg 2~,22 have presented 
an analysis of sorption in very fine polymer powders, 
where data are correlated by an equation which, in the 
notation of this paper, reads: 

I4' = (el0 - c~)fD(t) + ~ (C~i -- el0)(1 -- e-dO i) 
i=l 

(17) 

where fD(t) is the pure diffusion function appro- 
priate to the spherical geometry. The equation proposed 
is based on the concept that there may be more than one 
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relaxation process to be taken into account, each of  them 
with a different relaxation time 0i. From the viewpoint 
taken in this paper, Berens and Hopfenberg consider the 
case where only one internal state variable is not sufficient 
to determine the state of  the material, so that instead of  
only the parameter ~ a set of  parameters ~i needs to be 
considered. Furthermore they implicitly assume that the 
kinetics of  evolution of  all internal state variables are of  
the simple linear form of equation 5. 

Several comments are in order concerning equation 17. 
First of  all, unless the diffusion time OD is much less than 
the smallest relaxation time 0i, equation 17 cannot be 
correct, since it does not allow for a diffusion-relaxation 
coupling term of  the type of  the term in square brackets 
on the RHS of equation 11. When the data that Berens 
and Hopfenberg correlated with equation 17 are examined, 
it turns out that several sorption curves do not exhibit a 
plateau region of  apparent equilibrium, thus showing that 
in fact at least one of the relaxation times has an order of  
magnitude comparable to that of the diffusion time. There- 
fore, there is some doubt as to whether in fact equation 17 
is appropriate for the analysis of  such data except as essen- 
tially a curve-fitting procedure. Indeed, Berens and Hop- 
fenberg do not claim any more than the latter. 

Hopfenberg 24 has informed us that he has experimental 
evidence showing that swelling can be induced even at very 
low solvent activities, and has pointed out that this may 
justify the simple additivity implied by equation 17. An 
'On-Off' mechanism triggering the swelling, is not easily 
accommodated from the viewpoint taken in this work, 
since whatever solvent is sorbed in the core of  the sample 
and thus measured as part of  the total weight increase, 
would still need to get to the core by diffusion. 

Although equation 17 allows in principle for as many 
relaxation times Oi as one wishes, in practice Berens and 
Hopfenberg do not need more than two, and often in fact 
only one, in order to correlate the data. It turns out that 
those sets of  data which do exhibit an apparent equilibrium 
plateau can be correlated by using only one relaxation time: 
this of  course corresponds to using equation 16 when it is 
predicted to hold, i.e., when ~ ~ 1. 

The sets of  data which require two relaxation times for 
correlation belong to two categories. The first one is that 
of sorption curves with no plateau, but with dW/dt  > 0 at 
all times. For such sorption curves equation 17 does not 
seem to be appropriate (at least one of  the Oi's is of  the 
order unity), and it is presumable that an equation of  the 
form of equation 11, with fD(t)  and fDR ( t )  appropriate to 
the spherical geometry, could correlate the data at least 
equally well. 

The second category of  data are sorption curves which 
go through a maximum, then decrease to a minimum and 
finally slowly approach saturation. Data of  this kind do 
indeed suggest that at the very least two distinct relaxation 
processes are taking place, the faster one being towards a 
state with a lower solubility than the initial one. 

The word relaxation, popular as it is, in fact is a confes- 
sion of  ignorance; it is commonly used to describe any 
time-dependent process, the physical nature of  which is 
not understood 22. In this paper we have tried to identify 
a specific physical process which causes a relaxation type of  
macroscopic behaviour, i.e., a first order rate of change of 
the degree of  swelling, the latter being measured by the 
activity parameter ~. 

There is a rather old set of data 23 which is reminiscent 
of the Berens and Hopfenberg data quoted above, though 

there is no indication of  a final approach to equilibrium 
after the minimum has been reached; in other words, the 
weight sorbed vs. time curve presents an overshoot of  the 
equilibrium vJue.  Mathematically, data of  this type are 
easily correlated by the analysis presented, by simply allow- 
ing ~ to be less than ~'2- Physically, this is rather surpris- 
ing at first sight, since it is hard to believe that solubility 
decreases with increasing degree of  swelling. One is there- 
fore forced to look for other physical phenomena (Solvent 
induced crystallization, crazing of the glassy region relieved 
by additional sorption, and desorption of  some originally 
present component,  are possible candidates) in order to 
explain the data. In fact, both the first and the third phy- 
sical phenomena have experimental support 2s-27. When 
experimental results, such as the Berens and Hopfenberg 
data quoted before, show final slow additional uptake of 
solvent after the overshoot, one needs to consider a degree- 
of-swelling slow phenomenon following whatever pheno- 
menon is responsible for the initial overshoot, i.e., in mathe- 
matical terms, one needs at least two internal state variables, 
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